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Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) and Streptococcus thermophilus (S. thermophilus) are commonly used starters
in milk fermentation. Fermentation experiments revealed that L. bulgaricus-S. thermophilus interactions (LbStI) substantially impact
dairy product quality and production. Traditional biological humidity experiments are time-consuming and labor-intensive in screening
interaction combinations, an artificial intelligence-based method for screening interactive starter combinations is necessary. However,
in the current research on artificial intelligence based interaction prediction in the field of bioinformatics, most successful models adopt
supervised learning methods, and there is a lack of research on interaction prediction with only a small number of labeled samples.
Hence, this study aimed to develop a semi-supervised learning framework for predicting LbStI using genomic data from 362 isolates (181
per species). The framework consisted of a two-part model: a co-clustering prediction model (based on the Kyoto Encyclopedia of Genes
and Genomes (KEGG) dataset) and a Laplacian regularized least squares prediction model (based on K-mer analysis and gene compo-
sition of all isolates datasets). To enhance accuracy, we integrated the separate outcomes produced by each component of the two-part
model to generate the ultimate LbStI prediction results, which were verified through milk fermentation experiments. Validation through
milk fermentation experiments confirmed a high precision rate of 85% (17/20; validated with 20 randomly selected combinations of
expected interacting isolates). Our data suggest that the biosynthetic pathways of cysteine, riboflavin, teichoic acid, and exopoly-
saccharides, as well as the ATP-binding cassette transport systems, contribute to the mutualistic relationship between these starter
bacteria during milk fermentation. However, this finding requires further experimental verification. The presented model and data are
valuable resources for academics and industry professionals interested in screening dairy starter cultures and understanding their
interactions.

Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus | interaction prediction | semi-supervised learning |
dairy starter | artificial intelligence | milk fermentation

INTRODUCTION

Lactic acid bacteria (LAB) are important industrial microorgan-
isms widely used in the food, pharmaceutical, and feed industries
(Hatti-Kaul et al., 2018). They are Gram-positive, acid-tolerant,
cocci or rod-shaped bacteria that metabolize carbohydrates as
their sole or major carbon source (George et al., 2018; Wang et
al., 2021b). Lactic acid bacteria are the most commonly used
starter cultures in food fermentation. A starter culture is a
preparation consisting of one or more bacterial species/strains
that are generally incorporated in the raw material of fermented
foods to accelerate and steer the fermentation process (Sharma et
al., 2023). The use of this bacterial preparation is paramount to
ensuring consistent and safe production of fermented foods.

There is a long history of human production and consumption
of fermented dairy products. These acidic dairy products are
created by starter cultures and/or specific microbes that acidify
milk (Macori and Cotter, 2018; Zannini et al., 2016). Initially,
natural fermentation was employed, but since the last century,
the food industry has made technological advancements,
commercializing fermented food production utilizing natural
starter cultures and adjuvant microbes. Dairy starter exemplifies
the proficient use of LAB in the dairy fermentation sector. The
biological properties and activities of LAB play a crucial role in
manufacturing fermented dairy products, particularly those with
distinctive flavors and textures (Bintsis, 2018; Sharma et al.,
2023). Fermented foods produced by functional strains can
contain numerous biologically active metabolites. These include
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aminobutyric acid, exopolysaccharides, conjugated linoleic acid,
and bacteriocins, such as reuterin, which enhance the nutra-
ceutical properties of finished food products (Abedin et al., 2023).
The metabolic capacity and diversity of LAB make them
significant contributors to the functional food industry, as they
improve human nutrition and health.
Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) and

Streptococcus thermophilus (S. thermophilus) are the predominant
bacteria used in the production of dairy starters. The two species
typically work together in dairy fermentation, supporting each
other synergistically and symbiotically for improved survival and
growth in the milk environment and throughout the fermenta-
tion process. The co-culture of these two bacteria dictates the
efficiency of the fermentation process and the quality of the
finished products (Deshwal et al., 2021; Ge et al., 2024). Their
symbiotic relationship confers desirable fermentation properties,
such as rapid acid production, high viscosity, and production of
diverse bioactive substances, imparting the sensory and func-
tional quality of the fermented milk products (Yang et al., 2023).
A fermented milk microbial ecosystem consists of a complex
network of mutualistic and feedback interactions among various
members of the microbial community, rather than a simple
aggregate of independent microbes (Settachaimongkon et al.,
2014; Sieuwerts, 2016). Though interactions between these two
species have been studied previously, screening for optimal
starter combinations has remained a challenge due to the vast
diversity of LAB genomes and small genomic differences that lead
to significant functional variations.

A customary approach for identifying ideal starter combina-
tions involves traditional and experimental approaches, but this
way is laborious. Alternatively, the development of computa-
tional models for predicting microbial interactions followed by
verification and further data training through biological experi-
ments is an effective avenue of research. Currently, there are four
trending areas of interaction research in bioinformatics: protein-
protein interactions, gene regulatory networks, drug-target
interactions, and molecular interaction networks. Computa-
tional and machine learning algorithms are routinely employed
to deduce the likelihood of protein interactions or probably
binding patterns based on data consisting of protein structure,
sequence, and function. Commonly used methods include
structure-based docking simulation, sequence alignment, and
machine learning (Lei et al., 2021; Lian et al., 2019; Wang et al.,
2023; Xu et al., 2021). In gene regulatory networks, interactions
between transcription factors and target genes are modeled as
network connections, revealing the complex relationships and
mechanisms of gene regulation. Methods for regulatory network
analysis include correlation analysis based on expression data,
topology analysis, and dynamic simulation (Jansen et al., 2022;
Peng et al., 2023). Drug-target interaction focuses on the affinity
and interaction patterns between drugs and target proteins by
integrating bioinformatics data, drug chemistry information, and
protein structure information. Commonly used methods include
virtual screening based on molecular docking, drug similarity
calculation, and machine learning (Deng et al., 2022; Dong et
al., 2023; Gu et al., 2023; Li et al., 2022; Peng et al., 2020b;
Zhang et al., 2022b; Zhou et al., 2021). Lastly, molecular
interaction networking seeks to construct biomolecular interac-
tion networks by integrating multiple experimental data and
bioinformatics analysis. This process reveals physical interac-
tions, regulatory relationships, and signaling pathways between

molecules. Common methods of achieving this include graph-
based network analysis, systems biology modeling, and network
dynamics simulation (Li et al., 2024; Wen et al., 2017). These
four types of interaction modeling have provided rich insights for
predicting microbial interactions in the milk fermentation
microbial ecosystem.

The objective of this study was to develop a one-on-one
combination screening model for L. bulgaricus-S. thermophilus
interactions (LbStI) during milk fermentation. This was achieved
by using a co-clustering algorithm together with the Laplacian
regularized least squares (LapRLS) prediction model. This study
generated a predictive model of LbStI using the genomic data
from a vast quantity of food-derived L. bulgaricus and S.
thermophilus isolates (181 isolates per species), amounting to a
total of 32,761 isolate combinations. The resulting model was
substantiated by a stringent validation process through cross-
validation, machine learning, and fermentation experiments
(Fermentation time and viscosity of fermented milk), confirming
its high accuracy in predicting starter interaction and fermenta-
tion outcome. Specifically, the combination of strains (positive
and negative combinations) screened by the model shows high
consistency with the fermentation experiment results. This work
presents a valuable resource for academics and industry
professionals for screening starter cultures and gaining insight
into dairy starter interactions.

RESULTS

Co-clustering and LbStIPred_SimLapRLS results

Our experimental data comes from a wide range of sources and
types, providing a solid data foundation for computer modelling
(Figure 1). A total of 711 positively and 362 negatively
interacting isolate combinations were predicted through co-
clustering (Table S1 in Supporting Information). The LbStIPred_-
ed_SimLapRLS model scored 2292 combinations with isolate
interaction (Table 1). These combinations were ranked according
to their probability of interaction; higher rankings represent a
higher likelihood of interaction, while lower rankings denote a
lower probability. Based on the interaction score, an approximate
interval of LbStI was determined. When the interaction matrix
was constructed, the labeled positive and negative combinations
were set to 1 and −1, while the predicted combinations were set
to 0 when constructing the interaction matrix. Thus, the top
1,314 combinations received positive scores, while the bottom
1,314 received negative scores. This parameter setting would
result in a score closer to 1 if the similarity between predicted and
labeled positive combinations was high, and a score closer to −1
if the similarity between predicted and labeled negative
combinations was higher.

Final LbStI prediction results

Finally, the prediction results of co-clustering and LbStIPred_-
ed_SimLapRLS were compared and combined as the final
prediction results of LbStI, yielding 142 final prediction isolate
combinations (Figure 2C). Positive combinations predicted by co-
clustering were among the top 500 of the LbStIPred_SimLapRLS
rankings, while negative combinations were distributed at the
back of the rankings (after 1,000), indicating that the predictions
from both methods corroborated each other.
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leave-one-out cross-validation

We used LOOCV to test the predictive performance of the
LbStIPred_SimLapRLS model (Chen et al., 2021a). Nineteen
rounds of validation were performed on the 19 labeled isolate
combinations. One labeled isolate combination was chosen in
each round of validation, and the corresponding value was set to
0 when constructing the interaction matrix. LbStIPred_Sim-
SimLapRLS was then used to make predictions of the picked
labeled combination. Since LOOCV would modify the prediction
range of LbStIPred_SimLapRLS when setting the interaction
matrix, the total number of predictions in each round varied. The

LbStIPred_SimLapRLS prediction was considered correct if the
rank percentages of the positive and negative combinations were
in the top and bottom 50%, respectively. A high accuracy of
89.47% (17/19) was achieved (Table 2). The validation test
found that five of the 11 positive combinations (IMAU20450,
IMAU20774; IMAU95110, IMAU80844; IMAU95110,
IMAU20543; IMAU95110, IMAU20588; and IMAU95110,
IMAU20774) ranked in the top 10% (corresponding to 7.50%,
2.18%, 5.41%, 6.59%, and 0.04%, respectively); four combina-
tions (IMAU20450, IMAU80844; IMAU20450, IMAU20543;
IMAU20450, IMAU20588; and IMAU95110, IMAU40133) had
rank percentages between 10% and 20% (corresponding to

Table 1. Predicted interaction results generated by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus interaction prediction framework based on similarity-
fusion LapRLS (LbStIPred_SimLapRLS)

Interaction label Combination (respective Lb, St isolates) Interaction score Rank

Positive IMAU95110, IMAU20774 0.911868768 none

Positive IMAU95110, IMAU80844 0.911688595 none

Positive IMAU20450, IMAU20774 0.911535088 none

Positive IMAU95110, IMAU20543 0.911409419 none

Positive IMAU95110, IMAU20588 0.911395415 none

Positive IMAU95110, IMAU20588 0.911298232 none

Positive IMAU95110, IMAU40133 0.911261113 none

Positive IMAU20450, IMAU20588 0.911218362 none

Positive IMAU20450, IMAU20543 0.91121752 none

Positive IMAU20450, IMAU40133 0.910960416 none

Positive IMAU62091, IMAU40133 0.910062115 none

Nil IMAU95110, IMAU80845 0.001737867 1

Nil IMAU95110, IMAU80840 0.001730118 2

Nil IMAU95110, IMAU80842 0.001704359 3

Nil * * 4–499

Nil IMAU95087, IMAU20543 0.000614619 500

Nil * * 501–999

Nil IMAU62091, IMAU32092 0.000246895 1,000

Nil * * 1,001–1,199

Nil IMAU62091, IMAU205623 0.000143121 1,200

Nil * * 1,201–1,313

Nil IMAU32111, IMAU80844 0.0000015572 1,314

Nil IMAU32265, IMAU80844 −0.000000309 1,315

Nil * * 1,316–1,699

Nil IMAU62081, IMAU32112 −0.000226876 1,700

Nil * * 1,701–2,289

Nil IMAU32076, IMAU32476 −0.00134442 2,290

Nil IMAU32076, IMAU80840 −0.001355872 2,291

Nil IMAU32076, IMAU80845 −0.001363913 2,292

Negative IMAU20450, IMAU20766 −0.909195262 none

Negative IMAU62161, IMAU40133 −0.910488145 none

Negative IMAU62081, IMAU40133 −0.910784237 none

Negative IMAU32076, IMAU20543 −0.910806333 none

Negative IMAU32076, IMAU20588 −0.910811971 none

Negative IMAU32076, IMAU80844 −0.910828816 none

Negative IMAU20312, IMAU40133 −0.910831868 none

Negative IMAU32076, IMAU40133 −0.911187354 none

Notes: Lb and St represent Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus (St), respectively. The non-labeled combinations were predicted to
show starter interaction. Combinations were ranked according to how likely they were to interact; higher rankings denote a higher probability of interaction, while
lower rankings denote a lower probability. Only representative results are shown in this table (refer to Table S1 in Supporting Information for complete prediction
results). *Symbol markings indicate omissions.
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13.52%, 10.12%, 12.12%, and 11.56%, respectively). Further-
more, four of the eight negative combinations (IMAU20312,
IMAU20766; IMAU32076, IMAU20543; IMAU32076,
IMAU20588; and IMAU32076, IMAU40133) ranked below
70% (corresponding to 80.97%; 80.33%; 72.83%; and 91.89%,
respectively). The results of LOOCV validation confirmed a good
prediction performance of LbStIPred_SimLapRLS.

Validation with milk fermentation experiments

We randomly selected 20 isolate combinations (13 positively and

seven negatively interactive) from the 142 potential interactive
combinations predicted by LbStI for validation with milk
fermentation experiments. A fast acid production rate is a
significant criterion for identifying high-quality starter cultures,
as good starter isolates can enhance the production efficiency
and quality of fermented milk (Dan et al., 2017). One-day
ripening improved the flavor and texture of fermented milk.
Specifically, low-temperature post-ripening can control the
acidity of fermented milk, produce acetone and other flavor
substances, enrich the taste of yogurt, and make the state of
yogurt more stable. Therefore, we chose the yogurt after one day

Figure 2. Schematic flow diagram of this work. A, Data preprocessing—from acquiring the 4–8 mer dataset through K-mer analysis to concatenating the KEGG data. B, Model
building—the process of construction of the LbStI Prediction based on the Similarity-fusion LapRLS (LbStIPred_SimLapRLS) and co-clustering models. C, Generation of the final
results by combining the intersection prediction sets of the co-clustering and LbStIPred_SimLapRLS and validation of the final results by milk fermentation experiments.
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of ripening to evaluate its characteristics, which are reflected in
the changes in its viscosity, pH value, water retention capacity
and sensory characteristics. The choice of starter culture
significantly impacts these properties. Accordingly, we validated
the LbStI prediction results by evaluating the fermentation
performance of these 20 randomly selected isolate combinations
based on these attributes.

Fermentation time required to reach the fermentation endpoint
The commercial starter, Control-YF922, required the shortest
time to reach the fermentation endpoint of pH 4.5 (6.07±0.15) h;
Figure 3A). Nearly all (except one) of the 20 predicted positively
interacting isolate combinations required less than 8 h to reach
the fermentation endpoint, while all the predicted negatively
interacting combinations needed over 8 h to complete the milk
fermentation. These results suggest that the fermentation time
and the projected starter interaction align with each other.

Fermented milk properties after 1-day ripening
(i) Viscosity. Ten out of the 13 probable positively interacting
isolate combinations produced fermented milk with high
viscosity (over 800 mPa·s), with the highest viscosity produced
by the starter combination, IMAU95110 and IMAU10630
(mean=2,856 mPa·s; Figure 3B). The remaining three pairs
produced fermented milk with low viscosity and poor texture. In
contrast, all seven pairs of probable negatively interacting isolate
combinations produced fermented milk with low viscosity and
poor texture (Figure 3B), resembling a bean curd residue state.
These data suggest that the predicted result of starter isolate
interactions is largely consistent with the viscosity of fermented
milk. See Table S6 in Supporting Information for the comparison
details of the significant differences between the groups in Figure
3A and B.

(ii) Water-holding capacity. The water-holding capacity of
fermented milk is a vital criterion for evaluating its internal
structure stability and whey precipitation. The water-holding
capacity of the ripened fermented milk was similar in both
positively interacting (ranging from 55.6% to 63.3%) and
negatively interacting combinations (ranging from 54.1% to
62.45%; Figure S1A in Supporting Information). These results
suggest that there is no correlation between the water-holding
capacity of fermented milk and the predicted outcome of isolate
interaction.

(iii) pH. The acidity level of fermented milk significantly
impacts its shelf life, flavor, and taste, affecting production time,
efficiency, and product quality. A proper acidity level contributes
to the pleasant taste and smooth texture of fermented milk. The
pH values of 1-day ripened fermented milk produced by the 20
isolate combinations varied from 4.3 to 4.4, with no significant
difference observed between the positively or negatively predicted
combinations (Figure S1B in Supporting Information).

(iv) Sensory quality. Sensory evaluation is a crucial tool for
assessing the popularity and quality of fermented milk, and the
sensory evaluation results of fermented milk produced by the 20
isolate combinations are shown in Figure 3C. In the current
sensory evaluation, the 100-point scale covered five attributes
(20 points per attribute): organization state, taste, special flavor,
color and luster, and liking. Our results showed that, except for
three poor viscosity combinations (IMAU95110, IMAU80842;
IMAU20762, IMAU20588; and IMAU20450, IMAU20465), the
overall sensory scores of the predicted positively interacting
combinations were higher than those of the predicted negatively
interacting combinations.

Accuracy of the LbStI prediction model
The experimental validation results showed that both the co-

Table 2. Leave-one-out cross-validation (LOOCV) of predicted results

Round Label Combination (respective Lb, St isolates) Rank Total number of predictions Rank percentage Prediction accuracy

1 Positive IMAU20450, IMAU80844 310 2,293 13.52% True

2 Positive IMAU20450, IMAU20543 232 2,293 10.12% True

3 Positive IMAU20450, IMAU20588 278 2,293 12.12% True

4 Positive IMAU20450, IMAU20774 172 2,293 7.50% True

5 Positive IMAU20450, IMAU40133 796 2,293 34.71% True

6 Negative IMAU20450, IMAU20766 61 2,119 2.88% False

7 Positive IMAU62091, IMAU40133 1,910 2,118 90.18% False

8 Positive IMAU95110, IMAU80844 50 2,293 2.18% True

9 Positive IMAU95110, IMAU20543 124 2,293 5.41% True

10 Positive IMAU95110, IMAU20588 151 2,293 6.59% True

11 Positive IMAU95110, IMAU20774 1 2,293 0.04% True

12 Positive IMAU95110, IMAU40133 265 2,293 11.56% True

13 Negative IMAU20312, IMAU20766 1,715 2,118 80.97% True

14 Negative IMAU62081, IMAU40133 1,296 2,118 61.19% True

15 Negative IMAU62161, IMAU40133 1,142 2,293 53.92% True

16 Negative IMAU32076, IMAU80844 1,523 2,293 66.42% True

17 Negative IMAU32076, IMAU20543 1,842 2,293 80.33% True

18 Negative IMAU32076, IMAU20588 1,670 2,293 72.83% True

19 Negative IMAU32076, IMAU40133 2,107 2,293 91.89% True

Notes: Lb and St represent Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus (St), respectively. LbStIPred_SimLapRLS predicted results were
validated by 19 rounds of LOOCV. Each labeled combination was ranked by LOOCV. The total number of predictions in each round varied due to the impact of LOOCV
on the prediction range of LbStIPred_SimLapRLS when generating the interaction matrix. When the rank percentage of the labeled positive and negative combination
fell within the top and bottom 50%, respectively, the LbStIPred_SimLapRLS prediction was deemed accurate.
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Figure 3. Fermented milk characteristics and microbial interactions of different isolate combinations. A, Fermentation time. B, viscosity of fermented milk produced by different
isolate combinations. The green, blue, and peach bars represent the results of the control (a commercial starter, YF-922) and isolate combinations predicted to exhibit positive and
negative interaction, respectively. Error bars represent standard deviation. C, Radar chart showing sensory attributes of 1-day ripened fermented milk produced by different isolate
combinations. The sensory evaluation was based on five attributes: organizational state, taste, flavor, color and lust, and liking. Each attribute was graded on a 20-point scale: 0
(none) to 20 (extremely strong). The results for each combination are shown in a different color. D, Line chart showing the isolate combinations and their interactions. Blue and
peach circles represent isolates of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus, respectively. The isolate interaction in milk fermentation was assessed
based on the fermentation time and viscosity after 1-day ripening. Positively interacting combinations are connected by pink lines (indicating correct prediction of positive isolate
combinations) and gray lines (indicating misprediction), respectively, while negatively interacting combinations are connected by blue lines.
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clustering and LbStIPred_SimLapRLS algorithms erroneously
identified three combinations as positively interacting pairs. In
fact, all three combinations exhibited a negative overall
fermentation score, suggesting that they had non-mutualistic
interaction as a starter culture during milk fermentation
(Table 3, Figure 3D). Based on the validation results of the milk
fermentation experiments, the LbStI model achieved a highly
accurate prediction rate of 85% (17/20).

DISCUSSION

This study used genome information from 181 L. bulgaricus and
181 S. thermophilus dairy isolates to construct a semi-supervised
learning framework for predicting starter interactions in milk
fermentation by co-clustering and LapRLS algorithms. The model
showed a strong prediction accuracy, which was confirmed by
five machine learning methods, LOOCV, and milk fermentation
experiments; achieving an 85% accuracy rate (17/20) through
validation with 20 randomly selected anticipated interacting
isolate combinations. Meanwhile, our model construction and
analysis process has disclosed intriguing biological insights on
the metabolic interaction mechanisms between the starter
isolates.

One strength of this study was the incorporation of putative
genes and KEGG data in our model construction. The putative
gene dataset represents the genomic potential of the microbe,
while the KEGG database offers comprehensive biochemical
pathways and information on metabolic interactions. Therefore,
utilizing the complete gene and feature-fused KEGG datasets
could uncover intriguing mechanistic details regarding biological
interactions and synergistic effects of dairy starters during milk
fermentation. To identify the factors that affect L. bulgaricus and
S. thermophilus interactions, we calculated the average values
with consideration of the presence/absence of genes and KOs in
our datasets for 39 isolate combinations (19 labeled combina-
tions and the 20 final predicted combinations). From these
results, we identified the top 10 differential genes and KOs
exhibiting the lowest P values in Mann-Whitney U tests between
the positively and negatively interacting isolate combinations
(Figure 4A, Table 4). Some of these factors may have important
functions in initiating starter interactions in the milk fermenta-
tion process, particularly K01005, K05846, K14652 (ribBA),
K23304, opuCA, opuCB_2, opuCC, and epsF. These genes and KOs
are primarily involved in cysteine, riboflavin, teichoic acid, and
exopolysaccharide biosynthesis, as well as ATP-binding cassette
(ABC) transporter systems. Overall, the positively interacting
isolate combinations have a higher number of these differential
genes and KOs compared with those with negative interactions,
suggesting that these gene functions and metabolic pathways are
beneficial to milk fermentation.

K23304 is a serine O-acetyltransferase participating in the
biosynthesis of cysteine. Cysteine biosynthesis mainly involves
two steps: the conversion of L-serine to O-acetyl-L-serine and the
subsequent formation of L-cysteine. The first step involves serine
O-acetyltransferase, and the process of biochemical conversion is
depicted in Figure 4B. The two substrates of the enzyme are
acetyl coenzyme A and L-serine, while its two products are
coenzyme A and O-acetyl-L-serine. Cysteine is an important
natural sulfur-containing amino acid, which has many func-
tions, such as promoting growth, antioxidation, and detoxifica-
tion. Furthermore, it serves as the metabolic precursor of various

essential biomolecules, including vitamins, cofactors, antioxi-
dants, and many defense compounds (Alvarez et al., 2012). It
plays a pivotal role in the biological system of animals. The two
starter species, S. thermophilus and L. bulgaricus, require nitrogen
sources in the form of small peptides and amino acids for growth,
and fermentation can only occur when their amino acid
requirements are met (Liu et al., 2016). Analysis of the growth
media of 15 isolates of S. thermophilus revealed that this species
relies on amino acids, such as cysteine, glutamic acid, and
methionine, for growth. The absence of these amino acids
impedes their growth (Letort and Juillard, 2001). Lactobacillus
delbrueckii subsp. bulgaricus strain ND02 could increase the level
of cysteine and other metabolites in the whey after fermentation,
demonstrating its ability to degrade protein into peptides and
amino acids (Peng et al., 2020a). Therefore, it can be inferred
that cysteine facilitates metabolic cooperation and promotes
growth interactions between L. bulgaricus and S. thermophilus.

K14652 (ribBA) is part of the riboflavin biosynthetic (rib)
operon and encodes a 3,4-dihydroxy 2-butanone 4-phosphate
synthase or GTP cyclohydrolase II that catalyzes the first step in
riboflavin (vitamin B2) biosynthesis by hydrolyzing the initial
substrate, GTP. The synthesis of riboflavin is a complex chemical
reaction (Figure 4C). Riboflavin is an essential micronutrient for
the human body and is acquired through exogenous food or
nutritional supplements. Adequate riboflavin intake is crucial for
disease prevention and treatment (Zhang et al., 2022a).
Although lactic acid bacteria are typically deficient in multiple
vitamins, some can synthesize certain B vitamins, such as folic
acid (vitamin B9), riboflavin (vitamin B2), and cobalamin
(vitamin B12) (Capozzi et al., 2012; Leblanc et al., 2011). Given
its importance to human health and the ubiquity of deficiency,
riboflavin has become one of the most studied vitamins produced
by lactic acid bacteria (Pacheco Da Silva et al., 2016). Since
riboflavin is also an essential growth factor for lactic acid bacteria
(Le Boucher et al., 2013), we hypothesize that it plays a critical
role in supporting the co-culture and that positively interacting
isolate combinations can produce more riboflavin during
metabolism than the negatively or non-interacting pairs.

K01005 encodes a polyisoprenyl-teichoic acid-peptidoglycan
teichoic acid transferase, involved in teichoic acid biosynthesis.
Teichoic acid encompasses a diverse family of cell surface
glycopolymers containing phosphodiester-linked polyol repeat
units and is a unique cell wall component of Gram-positive
bacteria. We speculate that the substantial difference in K01005
function between positively and negatively interacting isolate
combinations could contribute to their variation in cell growth
and cell wall synthesis. However, our hypothesis awaits further
experimental confirmation.

Some identified differential KO and genes encode proteins
annotated as mineral and organic ion transporters under ABC
transporters in KEGG categorization and are specialized in
osmotic protectant uptake (opu; Figure 4D). ATP-binding
cassette transporters are one of the largest known protein
families and are widely distributed in bacteria. These transporters
facilitate the active transport of various substrates, such as ions,
sugars, lipids, sterols, peptides, proteins, and drugs, by coupling
ATP hydrolysis. K05846 corresponds to the opuBD gene and
encodes a permease protein in the osmoprotectant transport
system, which is a component of the bacterial opuB ABC
transport system. Interestingly, some components of the opuC
ABC transport system (opuCC, opuCB_2, and opuCA) were also
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identified as significantly differential genes between positively
and negatively interacting isolates. In Bacillus subtilis, the cells
import various osmostress protectants in the cell cytoplasm
under hyperosmotic conditions via five osmotically controlled
transport systems (opuA to opuE). OpuB specializes in importing
choline, which is required for the biosynthesis of glycine betaine,
while opuC imports a broad spectrum of compatible solutes
including choline and glycine betaine (Rath et al., 2020).
Osmotic protectants are essential in maintaining cell expansion
pressure and inhibiting cell osmotic imbalance, especially in
environments of low water potential and high ion pressure, to
prevent hypertonic shock (Kiousi et al., 2022). Therefore, the
presence of such genes in the positively interacting isolates likely
helps in maintaining cell stability even amid dynamic metabolic
conditions during fermentation.

Another differential gene is epsF, which is part of the
exopolysaccharide gene cluster responsible for the production
of extracellular polymeric substances (Figure 4E) (Lamothe et al.,
2002; Wu et al., 2014). The complete exopolysaccharide gene
cluster encompasses components responsible for regulation,
chain-length determination, biosynthesis (by the glycosyltrans-
ferase) and polymerization of repeating units, and export of
exopolysaccharides (Wu et al., 2023). The epsF encodes the
glycosyltransferase and is conserved across all major phyloge-
netic groups (Stingele et al., 1999). The study of Folkenberg et al.
(2006) observed that the interactions between different exopo-
lysaccharide-producing S. thermophilus isolates and non-exopo-
lysaccharide-producing L. bulgaricus could substantially change
the texture of fermented milk. Moreover, capsular polysacchar-

ide-producing isolates contribute to the high viscosity and desired
mouth thickness and creaminess of fermented milk (Folkenberg
et al., 2006). Thus, epsF is likely the reason for the higher
viscosity and better texture of fermented milk produced by the
positively interacting isolates over the negatively interacting
ones.

This work utilized genomic data from numerous food-derived
S. thermophilus and L. bulgaricus isolates to construct a rigorously
validated model for predicting dairy starter interactions. This
model aids in the selection for starter isolate combinations,
improving milk fermentation efficiency. In the process of model
building, we innovatively applied three algorithms of distinct
clustering methods, with consideration of the biological informa-
tion obtained from the isolate gene composition and KEGG
features, maximizing the prediction accuracy. While the model
exhibited high accuracy, it is not without limitations. For
example, the current model consists of two low-coupling sub-
models: co-clustering and Laplacian regularized least squares.
These sub-models were combined to generate the final results by
accepting their intersecting prediction sets. However, the two
sub-models were not fully integrated at a deeper level of
construction. This lack of comprehensive integration may hinder
the capability of the model to capture complex interactions and
potential synergies between different components. Moreover, it is
noteworthy that we did not compare our method with other
existing approaches for two reasons. Firstly, we had a limited
amount of labeled data available, consisting of only 19 pairs of
isolates. This small dataset poses challenges when attempting
meaningful comparisons with methods that rely on supervised

Table 3. Validation of predicted results by milk fermentation experiments

Isolate combination
(respective Lb, St isolates)

Fermentation time
(h, mean±SD, in triplicate)

Viscosity
(mPa·s, mean±SD, in triplicate)

Overall fermentation
score

Co-clustering
prediction

LPBSL
rank

IMAU95110, IMAU80842 7.59±0.03 (1) 231±31.90 (−2) −1 Positive 3

IMAU95110, IMAU10630 7.05±0.05 (1) 2856±114.47 (2) 3 Positive 13

IMAU95110, IMAU40145 6.76±0.09 (2) 1184±148.71 (2) 4 Positive 19

IMAU95110, IMAU20765 6.42±0.10 (2) 802±9.17 (0) 2 Positive 61

IMAU95110, IMAU20229 7.59±0.05 (1) 1166±27.06 (2) 3 Positive 99

IMAU20450, IMAU205622 7.68±0.06 (1) 1290±26.15 (2) 3 Positive 172

IMAU20450, IMAU20465 8.20±0.06 (0) 552±26.15 (−2) −2 Positive 237

IMAU20783, IMAU20588 7.33±0.19 (1) 1596±36.50 (2) 3 Positive 379

IMAU95095, IMAU20588 7.23±0.09 (1) 905±18.33 (1) 2 Positive 405

IMAU95052, IMAU20588 7.43±0.05 (1) 1176±87.16 (2) 3 Positive 409

IMAU20428, IMAU20588 8.22±0.07 (0) 1010±40.84 (1) 1 Positive 507

IMAU20360, IMAU20588 7.27±0.08 (1) 1378±39.95 (2) 3 Positive 510

IMAU20762, IMAU20588 9.62±0.08 (−2) 476±33.05 (−2) −4 Positive 549

IMAU32076, IMAU20465 11.46±0.08 (−2) 120±0 (−2) −4 Negative 2200

IMAU32076, IMAU20319 10.20±0.26 (−2) 750±18.9 (−1) −3 Negative 2217

IMAU32076, IMAU20550 10.18±0.03 (−2) 686±6.93 (−2) −4 Negative 2226

IMAU32076, IMAU20229 8.85±0.06 (0) 470±3.46 (−2) −2 Negative 2227

IMAU32076, IMAU80806 9.46±0.08 (−1) 172±12.49 (−2) −3 Negative 2243

IMAU32076, IMAU20547 11.19±0.14 (−2) 40±10.44 (−2) −4 Negative 2255

IMAU32076, IMAU40145 10.82±0.03 (−2) 146±15.10 (−2) −4 Negative 2285

Notes: The outcome of milk fermentation of a specific combination of Lactobacillus delbrueckii subsp. bulgaricus (Lb) and Streptococcus thermophilus (St) isolates was
assessed by two indicators, namely the fermentation time required to reach the fermentation endpoint (4.5<pH<4.6) and the fermented milk viscosity after 1-day day
ripening; the indicator scores are written in brackets. The fermentation time score ranged from 2 (high fermentation rate) to −2 (low fermentation rate); 2 (<7 h), 1
(≥7 h but <8 h), 0 (≥8 h but <9 h), −1 (≥9 h but <10 h), and −2 (≥10 h), respectively. The viscosity score ranged from 2 (high viscosity) to −2 (low viscosity); 2
(>1,000 mPa·s), 1 (≥900 but <1,000 mPa·s), 0 (≥800 but <900 mPa·s), −1 (≥700 mPa·s but <800 mPa·s), and −2 (≥700 mPa·s). The overall fermentation
score was calculated by adding the scores of fermentation time and viscosity. The three inaccurately predicted LPBSL results are shown in bold font.

https://doi.org/10.1007/s11427-023-2569-7 SCIENCE CHINA Life Sciences 9

https://doi.org/10.1007/s11427-023-2569-7


Fi
gu
re
4.

K
ey

fu
nc

tio
na

ld
iff

er
en

ce
sb

et
w
ee

n
po

si
tiv

el
y
an

d
ne

ga
tiv

el
y
in

te
ra

ct
in

g
is
ol
at

e
co

m
bi
na

tio
ns

.A
,B

ar
ch

ar
ts

sh
ow

in
g
th

e
to

p
di
ffe

re
nt

ia
lg

en
es

(id
en

tif
ie
d
fr
om

th
e
ge

ne
co

m
po

si
tio

n
of

al
li
so

la
te

sd
at

as
et

,G
CA

Id
at

as
et

)a
nd

K
yo

to
En

cy
cl
op

ed
ia

of
G
en

es
an

d
G
en

om
es

or
th

ol
og

s(
K
O
s)
,s

ho
w
in

g
th

e
to

p
10

di
ffe

re
nt

ia
lg

en
es

(K
O
s)

be
tw

ee
n

po
si
tiv

el
y
an

d
ne

ga
tiv

el
y
in

te
ra

ct
in

g
is
ol
at

e
co

m
bi
na

tio
ns

(s
ee

Ta
bl
e
4

fo
r
th

e
P

va
lu

e
of

ea
ch

ge
ne

an
d
K
O

co
m

pa
ri
so

n)
.E

rr
or

ba
rs

re
pr

es
en

tS
ta

nd
ar

d
D
ev

ia
tio

n.
B,

Th
e
cy

st
ei
ne

bi
os

yn
th

es
is

pa
th

w
ay

fu
nc

tio
ns

to
tr
an

sf
or

m
L-

se
ri
ne

to
L-

cy
st
ei
ne

.I
n

th
e
pr

oc
es

s,
se

ri
ne

O
-a

ce
ty

ltr
an

sf
er

as
e
tr
an

sf
er

s
ac

et
yl
-C

oA
to

L-
se

ri
ne

to
fo
rm

O
-a

ce
ty

l-L
-s
er

in
e,

w
hi

ch
fu

rt
he

r
re

ac
ts

w
ith

hy
dr

og
en

su
lfi

de
to

ge
ne

ra
te

L-
cy

st
ei
ne

.C
,R

ib
of
la
vi
n

bi
os

yn
th

es
is

pa
th

w
ay

in
vo

lv
es

th
e

tr
an

sf
or

m
at

io
n

of
G
TP

to
ri
bo

fla
vi
n.

In
th

e
fir

st
st
ep

,G
TP

cy
cl
oh

yd
ro

la
se

II
ca

ta
ly
ze

s
G
TP

to
2,

5-
di
am

in
o-

6-
(5

-p
ho

sp
ho

-d
-r
ob

os
yl
am

in
o)

py
ri
m

id
in

-4
(3

h)
-o

ne
.D

,E
xa

m
pl
es

of
ba

ct
er

ia
lA

BC
tr
an

sp
or

te
rs

ys
te

m
sa

re
ill

us
tr
at

ed
.O

sm
ot

ic
pr

ot
ec

ta
nt

up
ta

ke
(O

pu
)p

ro
te

in
si

m
po

rt
so

lu
te

si
nt

o
th

e
ce

ll
cy

to
pl
as

m
to

m
ai
nt

ai
n

ce
ll
ex

pa
ns

io
n

pr
es

su
re

an
d
in

hi
bi
tc

el
lo

sm
ot

ic
im

ba
la
nc

e.
E,

Sc
he

m
at

ic
re

pr
es

en
ta

tio
n

of
a

ty
pi
ca

le
xo

po
ly
sa

cc
ha

ri
de

ge
ne

cl
us

te
r
of

la
ct

ic
ac

id
ba

ct
er

ia
.

10 SCIENCE CHINA Life Sciences https://doi.org/10.1007/s11427-023-2569-7

https://doi.org/10.1007/s11427-023-2569-7


learning techniques and larger datasets. Secondly, in the field of
bioinformatic interactions, most approaches employ supervised

learning where each data point has corresponding labels,
enabling more robust training and evaluation processes (Lei et
al., 2021; Li et al., 2023a). Alternatively, semi-supervised
learning with a larger amount of labeled data is employed in
other cases (Dalkıran et al., 2023). Our modeling approach leans
towards unsupervised learning, in which the model learns
patterns and relationships from the unlabeled data itself. Direct
comparison of model performance is impractical and incon-
clusive when the research methods and underlying principles are
fundamentally different.

These limitations highlight the need for future research efforts
to explore ways to strengthen model coupling and amass a larger
amount of labeled data for more comprehensive evaluations and
comparisons with existing methods. Nonetheless, this study
effectively constructed a predictive model and garnered an
understanding of the interactions between dairy starters during
milk fermentation (Figure 5).

This study developed a semi-supervised learning framework
(LbStI prediction model) for predicting the interactions between
the two starter bacteria, L. bulgaricus and S. thermophilus, in milk
fermentation, with a high accuracy of 85%. Our prediction model
also revealed that the mutualistic starter isolates interactions in
optimal fermentation rely on cysteine, riboflavin, teichoic acid,
and exopolysaccharide biosynthesis and the function of ABC
transport. The model and data generated in this study will aid in
screening starter cultures and guide the development of
fermented products.

MATERIALS AND METHODS

Background information of bacterial isolates

The genomic information of 362 L. bulgaricus and S. thermo-
philus isolates (181 isolates per species) was used in this study.
Most isolates were obtained from naturally fermented milk

Table 4. Top 20 differential genes and KOs between positively and negatively
interacting isolate combinations

Top differential genes and KOs P value, Mann-Whitney U test

cas1 0.00000272

epsF 0.00016648

gtfC 0.00007490

nirC 0.00000431

opuCA 0.00014164

opuCB_2 0.00014164

opuCC 0.00014164

proX 0.00000272

rfbX_2 0.00034107

ribBA 0.00002160

K01005 0.00005365

K02030 0.00627884

K05846 0.00014164

K06147 0.00182316

K07482 0.00102930

K07493 0.00001106

K08659 0.00400906

K09384 0.00034157

K14652 0.00001945

K23304 0.00004671

Notes: The top 20 significantly different genes (determined from the gene
composition of all isolates dataset (GCAI dataset) by considering the presence/
absence of specific genes) and KEGG orthologs (KOs). These differential genes and
KOs exhibited the lowest P value (Mann-Whitney U test) between the positively
and negatively interacting isolate combinations across the complete dataset.
Only the 19 labeled and 20 predicted isolate combinations were included in this
analysis.

Figure 5. Schematic diagram showing proposed mechanisms of enhanced interactions between starter isolates of Lactobacillus delbrueckii subspecies bulgaricus and Streptococcus
thermophilus during milk fermentation. The differential metabolic pathways of cysteine, riboflavin, exopolysaccharides, teichoic acid, and osmotic protectant transporter function
are crucial determinants of starter combination interactions. Our findings suggest that these factors influence the outcomes of starter interactions.
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samples collected from three different countries (Figure 1; Tables
S2 and S3 in Supporting Information), including different
geological locations in China (Gansu, Nei Monggol, Qinghai,
Sichuan, Xizang, and Xinjiang), Mongolia (Bulgan, Central
Mongolia, Dornod, Erhan, Govi-Altay, Hou Hanggai, Hovsgol,
Kent, Oriental, Qian Hanggai, Selenge, Suhbaatar, Ulanbator,
and Zavkhan), and Russia (Tuva). Two L. bulgaricus isolates
were industrial starter cultures originating from Denmark and
Bulgaria, respectively. .All strains were provided by the National
Collection of Microbial Resource for Feed (Nei Monggol).

The genomes of all isolates were previously sequenced by
Illumina HiSeq high-throughput sequencing, and high-quality
data were selected for genome assembly and subsequent analyses
(https://figshare.com/s/4471858b0681af3ea270; Tables S2
and S3 in Supporting Information) (Song et al., 2021; Zhao et
al., 2021). The genome sequencing data are available in the
National Center for Biotechnology Information database (Bio-
Project IDs: PRJNA594100 for S. thermophilus; PRJNA594100
for L. bulgaricus).

Positive and negative training samples

In milk fermentation, different combinations of L. bulgaricus and
S. thermophilus are used as starter cultures. The 181 L. bulgaricus
and 181 S. thermophilus in our dataset could generate a total of
32,761 (181×181) unique isolate combinations. The study
aimed to establish a one-on-one screening method to detect
isolated interactions from these 32,761 combinations. To
accomplish this, 19 isolate combinations were selected randomly
and trained as positive and negative samples.

To determine their milk fermentation efficiency, we evaluated
the fermentation time required to reach the endpoint of pH 4.5 to
4.6 and viscosity after 1-day ripening. The fermentation time
score ranged from 2 (high fermentation rate) to −2 (low
fermentation rate); where 2 indicated a time less than seven
hours, 1 was for time between seven and eight hours, 0 between
eight and nine hours, −1 between nine and ten hours, and −2
indicated time greater than or equal to ten hours. The viscosity
score ranged from 2 (high viscosity) to −2 (low viscosity), with 2
indicating a high viscosity of greater than 1,000 mPa·s, 1
representing a viscosity of 900 to less than 1,000 mPa·s, 0
representing a viscosity of 800 to less than 900 mPa·s, −1
representing a viscosity of 700 to less than 800 mPa·s, and −2
referring to a low viscosity of less than 700 mPa·s.

The overall fermentation score was calculated by adding the
scores of fermentation time and viscosity. Combinations with a
positive sum score were considered as having potential for a
positive starter culture interaction, while those with a negative
sum score were deemed to have a negative starter culture
interaction. Subsequent analyses labeled them as positive and
negative interactions, respectively (Table 5).

Datasets

Our study analyzed the LbStI utilizing three genomic sequence-
based datasets, which were the KEGG dataset, the K-mer analysis
dataset, and the gene composition of all isolates (GCAI) dataset
(Tables S4 and S5 in Supporting Information). The KEGG dataset
is an extensive database of biological information that covers
genes, chemicals, metabolic pathways, cell signaling, and human
diseases in life sciences. We utilized metabolic pathway data for

our study. The term K-mer refers to a substring of length k,
typically employed to describe a continuous sequence of DNA or
RNA. Our study implemented a 4–8mer matrix. The GCAI
dataset comprised the entire set of unique genes from all isolates,
totaling 7,026 genes. Each gene in the GCAI matrix was assigned
a value of 1 or 0, depending on its presence or absence in a
specific isolate.

Model overview

The model was created through three stages: data preprocessing,
model building, and evaluation (Figure 2). In the preprocessing
phase, K-mers analysis and KEGG feature fusion were performed
on the data (Figure 2A). The LbStI prediction was based on a
semi-supervised learning framework that integrated two models
(Figure 2B). In the co-clustering model, fused KEGG data was
subjected to data dimension reduction by the Uniform Manifold
Approximation and Projection (UMAP) method before the actual
co-clustering process to obtain the LbStI prediction results. The
predicted results were validated by machine-learning methods.
Another model, LbStI Prediction based on Similarity-fusion
LapRLS (LbStIPred_SimLapRLS), implemented the LapRLS meth-
od for LbStI prediction using the similarity matrix, K-mer matrix,
GCAI, and the interaction matrix. The predicted results were
validated by leave-one-out cross-validation (LOOCV). A final set
of results was generated by combining the predicted outcomes of
the two models, which were further verified by milk fermentation
experiments (Figure 2C).

Data preprocessing
In the data preprocessing stage, we acquired a 4-8mer dataset
through K-mer analysis and a feature-fused KEGG dataset by
concatenating the KEGG data of the two species (Figure 2A). The
feature fusion step was necessary because of the occurrence of
inter- and intraspecific genomic variations, which are repre-
sented by the presence of both unique and overlapping genes in
and between species or isolates. Thus, it is necessary to perform a
first step to align the KEGG ortholog (KO) profile of L. bulgaricus
and S. thermophilus genomes to enable direct KO-based numerical
addition when performing the one-on-one KO profile comparison
between the two species. Specifically, the genomes of the L.
bulgaricus and S. thermophilus species contained 1,295 and 504
non-overlapping features, respectively, so the total number of
features of each species would add up to 1,799, and the
numerical value of 0 would be assigned to the increased features
in the respective isolate. The second step of the generation of the
feature-fused KEGG dataset was the actual KO addition operation
performed between each starter isolate combination, resulting in
a total of 32,761 fused KEGG data from the two sets of 181
isolates of the two species. The KEGG database contains a vast
amount of information regarding biochemical pathways and
metabolic interactions. If the values of identical or related KEGG
pathways from two isolates in a starter combination result in a
non-zero-sum, this potentially indicates a connection between
these pathways. This connection further implies a growth
interaction when the two isolates are co-cultured. By utilizing
the feature-fused-KEGG dataset, it is possible to analyze and
understand the interdependent interactions and synergistic
effects of various combinations of dairy starters during milk
fermentation.
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Co-clustering prediction
The co-clustering model is a statistical technique that clusters
data from various perspectives and standards to predict LbStI in
this case. This is achieved by classifying unlabeled data through
labeled distribution. This model could enhance prediction
accuracy by establishing complementary relationships between
predicted data and perspectives. The process involves initial data
screening, UMAP reduction of data dimension, and multiple
clustering using K-means, Gaussian mixture model (GMM), and
balanced iterative reducing and clustering using hierarchies
(BIRCH).

The computational load of clustering was reduced by
conducting a preliminary screening of 32,761 combinations
based on cosine similarity between unlabeled and labeled
combinations (Chen et al., 2021c) by using formula (1):

similarity
A B

A B
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Where Ai and Bi represented each component of the vectors, A
and B, respectively.

The preliminary data screening involved analyzing the
difference in similarity among labeled combinations using
similarity. We analyzed the average similarity between all
candidate combinations and 11 positive combinations (P1–
P11), selecting the top 3,000 with the highest similarities. From
these 3,000 combinations, the 1,000 combinations that showed
the least average similarity with the 8 labeled negative
combinations (N1-N8) were chosen as the primary positive

combinations. Similarly, we calculated the average similarities
between all the candidate combinations and N1-N8, selecting the
top 3,000 with the highest similarities. From these 3,000
combinations, the 1,000 combinations that showed the least
average similarity with the 11 labeled positive combinations
(P1–P11) were chosen as the prior negative combinations.

After the initial data screening, we conducted a cluster
prediction using the UMAP dimension reduction method, which
decreased the 1,799 dimensions (primary positive combinations,
prior negative combinations, and 19 labeled combinations) to
three dimensions. Three clustering algorithms (K-means, Gaus-
sian Mixture Model, and Balanced Iterative Reducing and
Clustering using Hierarchies) were then used to cluster the data.
The results of these three clustering algorithms divided all
combinations into two groups. Ideally, all labeled positive
combinations were assigned to one group, while all labeled
negative combinations were assigned to the other group.
However, empirical experiments revealed that achieving this
ideal result was challenging, and only a relatively optimal
outcome was attainable (Table 6). For example, K-means
clustering achieved an accuracy rate of 16 out of 19, but three
positively labeled combinations were mistakenly clustered into
group 1. The unlabeled combinations in groups 0 and 1 were
considered positive and negative isolate combinations, respec-
tively.

If all three clustering techniques yielded somewhat optimal
results, the final prediction of interacting and non-interacting
combinations was determined by intersecting the data from the
positive and negative clusters of each technique. If the clustering
algorithms did not reach the relative optimum, the UMAP

Table 5. Combination of starter cultures and fermentation outcome

Isolate combination
(respective Lb, St isolates) Interaction label Code

Fermentation time
(h, mean±SD, in triplicate)

Viscosity (mPa·s, mean±SD,
in triplicate)

Overall fermentation
score

IMAU20450, IMAU80844 Positive P1 7.42±0.36 (1) 1,720±78.50 (2) 3

IMAU20450, IMAU20543 Positive P2 7.72±0.03 (1) 1,698±63.38 (2) 3

IMAU20450, IMAU20588 Positive P3 7.47±0.17 (1) 1,706±78.05 (2) 3

IMAU20450, IMAU20774 Positive P4 7.23±0.03 (1) 1,688±54.51 (2) 3

IMAU20450, IMAU40133 Positive P5 6.53±0.03 (2) 1,765±4.58 (2) 4

IMAU62091, IMAU40133 Positive P6 8.17±0.03 (0) 1,805±39.51 (2) 2

IMAU95110, IMAU80844 Positive P7 7.88±0.01 (1) 1,731±52.00 (2) 3

IMAU95110, IMAU20543 Positive P8 7.83±0.03 (1) 1,693±58.20 (2) 3

IMAU95110, IMAU20588 Positive P9 8.38±0.02 (0) 1,707±12.13 (2) 2

IMAU95110, IMAU20774 Positive P10 6.75±0.12 (2) 1,714±75.19 (2) 4

IMAU95110, IMAU40133 Positive P11 6.63±0.03 (2) 1,754±33.86 (2) 4

IMAU20312, IMAU40133 Negative N1 10.2±0.02 (−2) 685±70.50 (−2) −4

IMAU20450, IMAU20766 Negative N2 9.75±0.02 (−1) 657±68.00 (−2) −3

IMAU62081, IMAU40133 Negative N3 9.53±0.05 (−1) 721±16.04 (−1) −2

IMAU62161, IMAU40133 Negative N4 9.87±0.01 (−1) 735±18.03 (−1) −2

IMAU32076, IMAU80844 Negative N5 10.22±0.03 (−2) 662±60.00 (−2) −4

IMAU32076, IMAU20543 Negative N6 11.55±0.04 (−2) 697±78.35 (−2) −4

IMAU32076, IMAU20588 Negative N7 10.41±0.03 (−2) 674±8.14 (−2) −4

IMAU32076, IMAU40133 Negative N8 7.43±0.04 (1) 638±7.51 (−2) −1

Notes: The outcome of milk fermentation of a specific combination of Lactobacillus delbrueckii subsp. bulgaricus (Lb) and Streptococcus thermophilus (St) isolates was
assessed by two indicators, namely the fermentation endpoint (4.5 < pH < 4.6) and the fermented milk viscosity after 1-day ripening; the indicator scores are written
in brackets. The fermentation time score ranged from 2 (high fermentation rate) to −2 (low fermentation rate); 2 (<7 h), 1 (≥7 h but <8 h), 0 (≥8 h but <9 h), −1
(≥9 h but <10 h), and −2 (≥10 h), respectively. The viscosity score ranged from 2 (high viscosity) to −2 (low viscosity); 2 (>1,000 mPa·s), 1 (≥900 but <
1,000 mPa·s), 0 (≥800 but <900 mPa·s), −1 (≥700 mPa·s but <800 mPa·s), and −2 (≥700 mPa·s). The overall fermentation score was calculated by adding the
scores of fermentation time and viscosity. Combinations having a positive and a negative sum score were considered to have a potentially positive and negative starter
culture interaction, respectively. Each combination was given a different code.
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operation would be repeated with a re-adjustment of the
random_state parameter until all three clustering algorithms
satisfied the requirements. Congruent results from the three
clustering algorithms were regarded as the predicted results of
the co-clustering model. This process ensured the best possible
outcome.

LbStIPred_SimLapRLS prediction
To predict potential combinations of LbStI, we developed a semi-
supervised learning framework, namely LbStI Prediction Frame-
work based on Similarity-fusion LapRLS (LbStIPred-SimLap) for
interaction prediction (Chen et al., 2016; Chen et al., 2012). The
development process involved three steps: constructing an
interaction matrix from known LbStI combinations (Chen et al.,
2021b), calculating interspecies KEGG-GCAI fusion similarity of
individual L. bulgaricus and S. thermophilus, and developing the
LapRLS prediction module, which combined the L. bulgaricus and
S. thermophilus classifiers.

The interaction matrix M was constructed using data from 181
L. bulgaricus and 181 S. thermophilus, which were 181×181 in
size. The initial values of all combinations were set to 0, awaiting
the prediction of the probability of interactions. Then, the values
of labeled combinations were modified, with positive and
negative values set to 1s and –1 s, respectively. These labeled
combinations can be used as prior knowledge in semi-supervised
learning to predict the interaction probability for unlabeled
combinations. The final construction of interaction matrix M is
shown in Table 7.

We calculated the cosine similarity of the 181 L. bulgaricus
isolates and constructed the similarity matrix (SL), with K-mer

(4–8 mer) and GCAI using formulae (2) and (3).

S S= × (2)LB k
k

LB_ mer
=4

8

_K-mer

( )S S S= + 1 (3)L LB LB GCAI_K-mer _

We used the weighted averaging method for the L. bulgaricus
similarity integration, which assigned equal weight to each of the
similar measures. was the weighting factor, and it was set to
0.2 (formula 3) and 0.5 (formula 4) in this work. The cosine
similarity matrix (SS) for the 181 S. thermophilus isolates was
calculated using the same method. After constructing the
interaction matrix M and similarity fusion matrices (SLand SS),
LapRLS was used to construct the LbStI predictor (Figure 2B).

To implement the LapRLS Predictor, the diagonal matrices for
the L. bulgaricus and S. thermophilus isolates (DL and DS) must first
be defined. DL and DS were defined such that D i i( , )L and D i i( , )S

were the sum of rows of SLand SS, respectively (Chen et al.,
2021b). Then, the normalized Laplacian similarity matrices were
calculated by using formulae (4) and (5):

L D D S D= ( ) ( )( ) (4)L L L L L
1/ 2 1/ 2

L D D S D= ( ) ( )( ) (5)S S S S S
1/ 2 1/ 2

The predictor, P *, was obtained based on the theoretical
assumption of previous works (Chen et al., 2016; Chen et al.,
2012; Xia et al., 2010): if Lb1 and St1 could interact, then Lb2,
which was very similar to Lb1, was assumed to be able to interact
with St1. Based on the above assumption, formula (6) was used
to define the optimal prediction function of L. bulgaricus space
(PL

*), which was essentially a cost function,

P M P P L P= arg min [|| || + || || ] (6)L P L F L L
T

L L F
*

2 2

L

where || . ||
F

was Frobenius norm, and L was the weight
parameter in the L. bulgaricus space. After that, we could solve
formula (6) to get PL

* using equation (7) (Xia et al., 2010).
Ps

*could be calculated in a similar way using formula (8). It
should be noted that when calculating Ps

*, M here must be
transposed.

P S S L S M= ( + ) (7)L L L L L L
* 1

P S S L S M= ( + ) (8)S S S S S S
T* 1

Finally, the ultimate predictor, P *, was obtained by combining
PL

* and Ps
*, as shown in formula (9):

P
P P

=
+ ( )

2
(9)L S

T
*

* *

The final output of the predictor, P *, was a score table arranged
in descending order. The closer the top of the table, the higher the
score, indicating a higher likelihood of LbStI.

Verification with milk fermentation experiments

Preparation of freeze-dried powder of bacterial isolates
The experimental isolates were activated and subcultured being
expanded in a 5 L reagent bottle with a high boron silicon thread
mouth (Sichuan Shubo Co., Ltd., Chongzhou, China). They were
then inoculated into de Man-Rogosa-Sharpe broth and M17

Table 6. Results of clustering analyses

Isolate combination code K-means GMM BIRCH

P1 0 1 0

P2 0 1 0

P3 0 1 0

P4 0 1 0

P5 1 0 1

P6 1 0 1

P7 0 1 0

P8 0 1 0

P9 0 1 0

P10 0 1 0

P11 1 0 0

N1 1 0 1

N2 1 0 0

N3 1 0 1

N4 1 0 1

N5 1 0 0

N6 1 0 1

N7 1 0 1

N8 1 0 1

Clustering precision rate 16/19 16/19 15/19

Notes: three clustering analyses were performed, namely K-means, GMM, and
BIRCH, to assign each isolate combination to cluster 0 or 1 in each case.
Presumably, isolate combinations should form clusters based on a positive or
negative overall fermentation score; isolate combinations that did not cluster
correctly are written in bold font.
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broth for static fermentation in a 42°C constant temperature
incubator (LBH-250 biochemical incubator, Shanghai Yiheng
Scientific Instrument Co., Ltd., Shanghai, China). Bacterial cells
were harvested by centrifugation (DL-6M centrifuge, Hunan
Xiangyi Laboratory Instrument Development Co., Ltd, Changsha,
China), mixed with a cryoprotective agent, and frozen in a freezer
at −80°C for 24 h. Afterward, the frozen cells were subjected to
vacuum freeze-drying for 48 h in a freeze dryer (EYALA DRC-
1000/EYERA FDU-1100, Tokyo Physical and Chemical Instru-
ment Co., Ltd., Japan), and the freeze-dried bacterial preparations
were ground into powder and stored in aluminum foil bags after
viable cell count. These steps ensured that the correct isolates
were used in the fermentation experiments and that the stored
frozen cells were still viable after the freeze-drying procedure.

Preparation of fermented milk
Stirred yogurt was prepared per the protocol described in Kearney
et al. (2011). Briefly, 93.5% pure milk (pure milk containing 3%
protein, Inner Mongolia Mengniu Dairy Co., Ltd., Hohhot, China)
was used as the base material. The milk was preheated to 62°C to
65°C before 6.5% sucrose was added. The milk mixture was left for
10 min to allow the sucrose to dissolve, followed by homogeniza-
tion under high pressure of 20 mPa·s (SHR 60-70, Shanghai
Shenlu Homogenizer Co., Ltd., Shanghai, China), pasteurization
at 95°C for 5 min, and cooling to 42°C in a water bath. The cooled

milk was aseptically inoculated with the appropriate isolate
combinations (S. thermophilus of 2×106 CFU mL−1 and L.
bulgaricus of 2×104 CFU mL−1, corresponding to a species
inoculation ratio of 100:1) and fermented in a 42°C incubator
until reaching the fermentation endpoint of pH 4.5 to pH 4.6.
The fermented milk was cooled in an ice water bath for 30 min.
Then, the fermented milk was ripened in a refrigerator at 4°C for
24 h.

Evaluation of characteristics of fermented milk after one day of
ripening
(i) Determination of pH. The pH level of fermented milk was
measured thrice by a FE28 pH meter (Mettler Toledo, USA).

(ii) Determination of titratable acidity. The titratable acidity of
fermented milk was determined by mixing 5 g of it with 20 mL of
boiled and cooled distilled water. The mixture was then titrated
with 0.1 N NaOH in the presence of 0.5% phenolphthalein
indicator (Bai et al., 2020). The measurement was performed in
triplicate.

(iii) Determination of viscosity. The viscosity of fermented milk
was measured thrice with a Brookfield DV-1 viscometer
(Brookfield Co., Middleboro, MA, USA) using a No. 4 rotor,
torque range of 10%–100%, rotating speed of 100 r min−1, and
measuring time of 30 s (Dan et al., 2018).

(iv) Determination of water-holding capacity. Twenty grams of

Table 7. Interaction matrix M

St_1 St_2 St_3 St_4 St_5 St_6 St_7 … St_181

Lb_1 1 1 1 1 1 −1 0 … 0

Lb_2 0 0 0 0 1 0 0 … 0

Lb_3 1 1 1 1 1 0 0 … 0

Lb_4 0 0 0 0 −1 0 0 … 0

Lb_5 0 0 0 0 −1 0 0 … 0

Lb_6 0 0 0 0 −1 0 0 … 0

Lb_7 −1 −1 −1 0 −1 0 0 … 0

… … … … … … … … … 0

Lb_181 0 0 0 0 0 0 0 0 0

Notes: The data of 181 each of Lactobacillus delbrueckii subsp. bulgaricus (Lb) and Streptococcus thermophilus (St) were analyzed in this work. The subfix number code
represents the isolate number. “…”: The table shows a matrix with 181 rows and 181 columns.

Table 8. Sensory evaluation scoring standards

Sensory attribute Description of scoring standard Score (20 per attribute)

Organizational state

The state is even and delicate, without stratification, bubbles, and whey precipitation. 15–20

The state is relatively uniform, without stratification, but with a small amount of whey precipitation. 10–15

The state is uneven, with curd lumps or particles, obvious stratification, and a large amount of whey precipitation. 0–10

Taste

Moderate acidity, delicate and smooth taste. 15–20

Excessive or insufficient acidity imparts a less delicate and smooth taste. 10–15

No sour or rough taste, granular or sandy. 0–10

Special flavor

There is a mellow yogurt smell; no peculiar smell. 15–20

Suitable sweet and sour balance; a dull aroma, but no peculiar smell. 10–15

Sweet and sour imbalance; no yogurt smell or with peculiar smell. 0–10

Color and luster

The color is very uniform, milky white or yellowish. 15–20

The color is relatively uniform, light yellow or light gray. 10–15

The color is dark, uneven, and abnormal. 0–10

Liking

Like the product very much. 15–20

Generally, like the product. 10–15

Do not like the product. 0–10
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fermented milk was filtered through a funnel with a piece of
qualitative filter paper at room temperature for 2 h. The filtrate
was collected and weighed. The water-holding capacity (%) was
calculated as (1−(filtrate mass/sample mass))×100.

(v) Sensory evaluation of fermented milk. A sensory evaluation
was conducted on the ripened fermented milk by a team of ten
food researchers and dairy processing professionals on the first
day of ripening. The sensory quality of fermented milk was
evaluated objectively from five aspects: organizational state,
taste, flavor, color, and liking (Table 8). Each attribute was scored
out of 20 points, with a maximum score of 100 points (Szajnar et
al., 2020).
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