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Abstract

As a kind of small molecule protein that can fight against various microorganisms in nature, antimicrobial peptides (AMPs) play
an indispensable role in maintaining the health of organisms and fortifying defenses against diseases. Nevertheless, experimental
approaches for AMP identification still demand substantial allocation of human resources and material inputs. Alternatively, computing
approaches can assist researchers effectively and promptly predict AMPs. In this study, we present a novel AMP predictor called iAMP-
Attenpred. As far as we know, this is the first work that not only employs the popular BERT model in the field of natural language
processing (NLP) for AMPs feature encoding, but also utilizes the idea of combining multiple models to discover AMPs. Firstly, we treat
each amino acid from preprocessed AMPs and non-AMP sequences as a word, and then input it into BERT pre-training model for
feature extraction. Moreover, the features obtained from BERT method are fed to a composite model composed of one-dimensional
CNN, BiLSTM and attention mechanism for better discriminating features. Finally, a flatten layer and various fully connected layers are
utilized for the final classification of AMPs. Experimental results reveal that, compared with the existing predictors, our iAMP-Attenpred
predictor achieves better performance indicators, such as accuracy, precision and so on. This further demonstrates that using the BERT
approach to capture effective feature information of peptide sequences and combining multiple deep learning models are effective and

meaningful for predicting AMPs.
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INTRODUCTION

With the gradual failure of traditional antibiotics in the face
of the challenge of drug resistance, antimicrobial peptides
(AMPs) have become a novel candidate for anti-infective drugs
due to their ability to help organisms resist infections from
bacteria, fungi, viruses and other microorganisms [1-3]. AMPs
are a type of small molecule protein fragments that naturally
exist in organisms [4, 5]. In addition to their anti-microbial
properties [6], some studies [7, 8] have indicated that certain AMPs
may have anti-proliferative, inducing apoptosis and inhibiting
angiogenesis effects on cancer cells. Therefore, AMPs have
provoked substantial attention in the fields of medicine and
biomedical research [9, 10]. The accompanying problem of AMPs
recognition and investigation [11, 12] also has become a wide-
ranging preoccupation for researchers both domestically and
internationally.

Due to the substantial human, material, financial and
temporal resources required by traditional experimental methods
for AMPs identification, many computational techniques have

emerged in a plethora of works related to constructing AMPs
databases and discovering AMPs [13, 14]. Research efforts in the
establishment of AMPs databases such as APD3 [15], DBAASP [16],
CAMP [17], YADAMP [18], SATPdD [19], dbAMP [20], among others,
have been introduced with the aim of enabling researchers and
scientists to gain deeper insights into the characteristics of these
molecules and to provide data support for prediction purpose.
Additionally, one recent development in this field is the Peptide
Utility (PU) search server [21], which significantly streamlines
peptide sequence searches across multiple AMPs databases,
enhancing research efficiency in the study of AMPs. In the realm
of AMP discovery research, peptide feature selection strategies,
machine learning classifiers and deep learning predictors can
facilitate researchers in efficiently screening and predicting
potential AMP candidates. Among these, peptide feature selection
strategies extract meaningful information from amino acid
sequences to aid in distinguishing between AMPs and non-
AMPs. For instance, AVPpred predictor [22] not only employs
amino acid composition and physicochemical properties to
extract valuable features from both anticancer peptides (ACPs)
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and non-ACPs but also subsequently utilizes machine learning
algorithm for efficient prediction of ACPs. In addition to the
aforementioned peptide selection strategies, methods such as
pseudo amino acid composition (PseAAC) and composition,
transition and distribution (CTD) are frequently adopted to depict
the feature representation of protein or AMPs sequences [11]. As
for machine learning classifiers, such as Support Vector Machine
(SVM), Random Forest (RF), K-Nearest Neighbor (KNN) and others,
leverage features extracted from peptide sequences for intelligent
prediction and discern the antimicrobial potential of peptides.
For example, [1] introduces a classifier called AMPfun based
on the RF algorithm to differentiate between AMPs and their
diverse functional activities. Similarly, iAMP-2L predictor [23]
is developed utilizing the PseAAC and fuzzy KNN technique
with the aim of facilitating the design of novel and highly
effective antimicrobial agents. [24] and [25] employ the SVM
algorithm to enhance the predictive performance of ACPs. [26]
proposes the ACP_MS predictor, which is constructed using the
monoMonoKGap method and AdaBoost model, to enhance the
accuracy of identifying ACP sequences. Moreover, a multitude of
deep learning models have emerged to drive the discovery and
investigation of AMPs in recent years. For instance, sAMPpred-
GAT [27] is the first work that utilizes the predicted peptide
structures and graph attention networks (GAT) to improve the
recognition performance of AMPs. [28] combines convolutional
neural networks (CNN) and long short-term memory (LSTM)
models to build a classifier aimed at addressing the AMPs
identification challenge. ACP-GCN framework [29] based on
graph convolutional networks (GCN) is proposed to effectively
differentiate ACPs from non-ACPs sequences. In addition to the
approaches mentioned above, bidirectional LSTM (BiLSTM) and
recurrent neural networks (RNN) are also extensively employed
to expedite the classification of novel AMPs as demonstrated by
these researches [30-35].

In the past few years, transformer architecture [36] has
achieved exceptional performance in a wide range of natural
language processing (NLP) tasks owing to its ability to overcome
the limitations encountered by traditional RNN and CNN
when dealing with long-distance dependencies. Furthermore,
transformer model is effectively applied to the tasks aimed
at extracting feature information from peptide sequences and
enhancing the accuracy of AMPs identification [37]. In comparison
with conventional unidirectional transformer pre-trained model,
bidirectional encoder representation from transformers (BERT)
architecture [38] demonstrates better performance in a lot of
tasks due to its capability for bidirectional context modeling.
It is understood that the BERT method has been successfully
utilized in the fields of protein lysine crotonylation (Kcr) [39],
AMP classification [40-42], etc.

Previous researches have demonstrated the remarkable per-
formance of BERT in a wide array of NLP tasks as well as in
the domain of AMPs recognition. Inspired by these works, we
introduce a new iAMP-Attenpred predictor built upon the BERT
model and several deep neural network frameworks. It is worth
noting thatiAMP-Attenpred identification model not only extracts
useful and important feature information of peptide sequences
through BERT technology, but also is the first attempt to synergis-
tically integrate CNN, BiLSTM and attention mechanism for the
purpose of predicting AMPs sequences. In order to validate its
effectiveness, we evaluate the capability of IAMP-Attenpred model
to discern whether a given peptide sequence exhibits antimicro-
bial property. Experimental results indicate that our new design
achieves significantly more dependable enhancements in AMPs

sequences recognition when compared to the state-of-the-art
predictors.

MATERIALS AND METHODS

In order to help construct a serviceable prediction model for AMPs,
we draw a flow chart for this work as shown in Figure 1. The
specific details of each process in this flowchart are described in
the following sections except for the Benchmark datasets section.

Benchmark datasets

In this study, we select two datasets as benchmark datasets so
as to achieve a fairer and more comprehensive comparison of
performance with the existing approaches. These two datasets
are obtained from these works [23, 43], and we label them as
benchmark datasetl and benchmark dataset2, respectively. The
benchmark datasetl consists of AMPs and non-AMPs sequences,
where the AMPs data are collected from AMPer [13], APD3 [15]
and ADAM [44] databases. To ensure the biological rationality and
interpretability of AMPs dataset, sequences containing any codes
beyond the 20 natural amino acid encodings are excluded. Mean-
while, one sequence from any pair of AMPs with the sequence
similarity exceeding 90% is removed using the CD-HIT program
[45] for the purpose of reducing redundant information. Addi-
tionally, the non-AMPs sequences are collected from the UniProt
database [46] with a constraint that the residues length of pro-
tein fragments ranged from 5 to 100. And then the sequences
containing any of these annotations, such as 'Antimicrobial’,
'Antibiotic’, 'Fungicide’ or 'Defensin,’ are excluded. The sequences
that include codes beyond the 20 natural amino acids are also
continuously eliminated. Moreover, the threshold of the CD-HIT
program is set to 40% so as to mitigate the impact of homology on
the analysis. As for the benchmark dataset2, the acquisition pro-
cess of non-AMPs dataset is similar to the benchmark dataset1.
Its AMPs sequences are obtained from APD database [47] and the
CD-HIT program with the 40% threshold is utilized. The specific
information of the two benchmark datasets finally obtained is
shown in Table 1. At the same time, statistical approach is used
for understanding the sequence length distribution of two bench-
mark datasets in our work. As shown in Figures 2 and 3, most
AMPs and non-AMPs have sequence lengths ranging from 5 to 100
whether it is benchmark dataset1 or benchmark dataset2.

The choice of these two datasets in our study is based on
several factors. Firstly, these datasets are widely recognized in the
field and have been used in prior researches, which allows for
meaningful comparisons with existing works. Additionally, these
datasets are of high quality and reliability. Finally, these datasets
are publicly available, which means that other researchers can
replicate our work and validate our results. Therefore, their avail-
ability and suitability for our study make them the preferred
choice.

BERT feature extraction

As illustrated in Figure 1, we adopt the BERT model for peptide
sequences feature encoding. To begin with, we consider each
molecular sequence in the benchmark dataset as a sentence in
the text field with each amino acid being treated as a word within
that sentence. And then these peptide sequences are fed into a
pre-trained BERT model that consists of four encoder layers, each
with eight attention heads and 512 hidden layers. More specifi-
cally, it involves two operations: sequence embedding and feature
representations acquiring by the encoder layers. Among them,
the first step necessitates the addition of [CLS] and [SEP] tokens
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Figure 1. Overall architecture of iAMP-Attenpred predictor.
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Table 1: Summary statistics information of two benchmark datasets
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Figure 2. Percentage distribution histogram of sequence length ranges based on benchmark dataset1.

to each peptide sequence for the purpose of proper embedding
of input sequences into the BERT model. While BERT generates
corresponding token embedding, segment embedding and posi-
tion embedding for each amino acid in this process, enabling
the model to comprehend contextual information(i.e. the rela-
tionships among different amino acids) within the sequence. The
task undertaken by another step involves utilizing encoder layers
to process those embedding vectors. It is noteworthy that each

encoder layer depends on its internal multi-head self-attention
and feed-forward neural network sub-layers to effectively con-
vert the embedding vectors of the input sequences into richer
feature representations. Regarding the multi-head self-attention
sub-layer, it is utilized to perform attention calculation at each
position within each input sequence so as to capture the rela-
tionships between that position and all other positions. This
enables the model to simultaneously consider various parts of the
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Figure 3. Percentage distribution histogram of sequence length ranges based on benchmark dataset2.

sequence, thereby acquiring contextual information. The specific
process of attention calculation [36] is outlined by Formula (1):

MultiHead(Q, K, V) = Concat (heads, ..., headn) W°
head; = Attention (QWQ, KWK, vwl.V)

1
. QKT
Attention(Q, K, V) = softmax| — )V

Ve

where Q, K and V, respectively, represent the Q (uery), K(ey) and
V(alue) matrices that are calculated from distinct linear transfor-
mations of input sequences. W?, WK and WY mean the weight
matrices. dp denotes the dimension of the key vector for each
attention head in the K(ey) matrix.

For the feed-forward neural network sub-layer, it performs non-
linear transformations on the contextual representation of each
position. This sub-layer typically comprises an activation function
(such as ReLU) and two linear transformations. Its computational
process [36] is presented as Formula (2):

Output(x) = max (0, XW; + by) W, + b, 2)

where W, and Wy, respectively, indicate the weight parameters,
while b; and b, represent the bias terms and x denotes the
representation obtained after undergoing processing through the
multi-head self-attention sub-layer.

In addition to these two sub-layers, there is also an important
component LayerNorm(x+Sublayer(x)) in the encoder layer. It is
used to implement residual connection and layer normalization,
aiding in stabilizing model training and learning sequence repre-
sentations more effectively. Eventually, the final feature represen-
tations from the last encoder layer output of the BERT model serve
as the input for the subsequent CNN-BIiLSTM-Attention approach
mentioned.

CNN-BiLSTM-Attention model construction

In this study, we construct a framework comprised of CNN, BiL-
STM and attention mechanism to augment its comprehension
and classification power pertaining to AMPs sequences. CNN has
the capability to identify patterns within segments of sequences
of varying lengths. It also can extract local features from the

original features and construct more advanced representations.
Taking advantage of the characteristics of CNN, we employ a one-
dimensional convolutional layer to perform convolution opera-
tions on the features extracted by BERT with the aim of further
capturing local patterns and features within the sequences. The
details of this convolutional layer are as follows: it is consisted of
64 filters with kernel size one and the ReLU activation function
is utilized. Subsequently, the output of CNN is fed into a BILSTM
layer.

BiLSTM is capable of capturing temporal dependencies within
sequences while simultaneously considering both forward and
backward information so as to generate more comprehensive
feature representations. Thereby, BiLSTM models the long-
term dependencies and global contextual information of the
peptide sequences based on the output of CNN. In this work,
we employ a BILSTM layer which is consisted of two LSTM
layers with 64 neurons each in both the forward and backward
directions.

Afterwards, the attention mechanism is applied to weight
the output of BILSTM layer by calculating attention weights.
The computational process of attention weights is shown in
Formula (3):

A = softmax (Dense (Xt)) (3)

where X; is the input data slicing at time step t.

This mechanism enables the model to focus more on infor-
mation fragments that play a crucial role in specific tasks when
processing input data but disregarding less significant parts. The
ability of CNN-BILSTM-Attention model to effectively capture
pivotal features and information within sequences data can be
enhanced by introducing this custom-designed attention mecha-
nism in this study, consequently helping the iIAMP-Attenpred pre-
dictor in achieving elevated accuracy in the AMPs classification
tasks.

Classification module

As depicted in Figure 1, a classification module which includes a
flatten layer followed by multiple fully connected layers is used to
solve the ultimate binary prediction problem for AMPs. Concretely
speaking, the flatten layer transforms the multi-dimensional fea-
tures obtained from the output of CNN-BiLSTM-Attention model
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Table 2: Performance comparison results of iAMP-Attenpred predictor and various deep learning approaches

Predictor ACC MCC SEN SPE PRE FSC

BERT-CNN 0.9758 0.9516 0.9699 0.9811 0.9786 0.9741
BERT-LSTM 0.9781 0.9564 0.9668 0.9881 0.9864 0.9763
BERT-BILSTM 0.9789 0.9577 0.9730 0.9841 0.9819 0.9773
BERT-CNN-LSTM 0.9774 0.9548 0.9716 0.9826 0.9803 0.9758
BERT-CNN-BILSTM 0.9765 0.9531 0.9670 0.9849 0.9826 0.9745
BERT-CNN-LSTM-Attention 0.9842 0.9684 0.9768 0.9907 0.9891 0.9828
BERT-CNN-BIiLSTM-Attention? 0.9844 0.9688 0.9813 0.9872 0.9853 0.9833

%It denotes our iAMP-Attenpred predictor.

Table 3: Performance comparison results of iAMP-Attenpred predictor and its variants based on existing machine learning algorithms

Predictor ACC MCC SEN SPE PRE FSC

BERT-CNN-BILSTM-SVM 0.8798 0.7618 0.8294 0.9261 0.9118 0.8681
BERT-CNN-BiLSTM-DT 0.8306 0.6609 0.8264 0.8346 0.8207 0.8234
BERT-CNN-BILSTM-RF 0.8850 0.7745 0.8150 0.9490 0.9364 0.8712
BERT-CNN-BiLSTM-Attention? 0.9844 0.9688 0.9813 0.9872 0.9853 0.9833

%It denotes our iAMP-Attenpred predictor.

into a one-dimensional vector for the purpose of furnishing a
flattened input for the subsequent fully connected layers. Then
four fully connected layers with neuron counts of 256, 128, 64 and
2, respectively are sequentially employed to learn more advanced
feature representations. It should be noted that the ReLU activa-
tion function and a dropout layer with a dropout rate of 0.1 are
applied after each fully connected layer except for the final one.
Eventually, the sigmoid activation function is employed to output
corresponding class probabilities.

Performance evaluation metrics

To assess the classification performance of iAMP-Attenpred
predictor, we choose to calculate seven metrics: sensitivity (SEN),
specificity (SPE), the Matthew’s correlation coefficient (MCC),
accuracy (ACC), Precision (PRE), F_score (FSC) and the area under
ROC (AUROC). Seven indicators are defined as Formula (4):

TP
SEN= —
TP + FN
TN
SPE= TN+ rp
MCC — (TP x TN) — (FP x FN)
~ /(TP + FP)(TP + FN)(TN + FP)(TN + FN)
P+ TN (4)
ACC= — "~~~
ce TP + TN + FP + FN
TP
PRE = 15 7P
2 x SEN x PRE
FSC= —SENtPRE

AUROC : Area under the ROC Curve

where TP and TN, respectively, indicate the number of AMPs and
non-AMPs correctly identified by the predictor. FP and FN specif-
ically denote the number of AMPs and non-AMPs that cannot
be correctly identified by the predictor. ROC means the receiver
operating characteristic curve.

RESULTS AND DISCUSSION

The 10-fold cross validation approach is employed for reliably
estimating the performance of our iAMP-Attenpred predictor in

this work. Specifically speaking, the benchmark dataset is split
into ten equally sized subsets with nine subsets used for model
training and the remaining one subset served as the testing data
for performance evaluation of the model. This process is repeated
10 times with different test subsets chosen for each repetition.

Performance comparison of iAMP-Attenpred
predictor and various deep learning methods

In this section, the same benchmark datasetl presented in
Table 1 is applied and the identical BERT feature extraction
model is utilized for investigation so as to demonstrate the better
classification capacity of the iAMP-Attenpred predictor compared
to various deep learning methods. These deep learning models
used for comparison include CNN, LSTM, BiLSTM, CNN-LSTM,
CNN-BILSTM and CNN-LSTM-Attention. The final performance
comparison results are listed in Table 2. It is evident that the
proposed iAMP-Attenpred classification model exhibits more
significant performance over the aforementioned deep learning
approaches in terms of the four metrics: ACC, MCC, SEN and
FSC. In addition, we notice that the PRE and FSC indicators
of iAMP-Attenpred method are not significantly distant from
those of the classifiers in Table 2 with the highest PRE and FSC
values.

We conduct an analysis of the performance enhancement,
which can be attributed to the following three factors. The first
and second factors are that the iAMP-Attenpred predictor incor-
porates the characteristics of both CNN and BiLSTM, enabling it
to effectively capture both local features and bidirectional depen-
dencies in peptide sequence data. The third factor is associated
with the attention mechanism that can focus on critical informa-
tion parts. Therefore, the combination of these three factors leads
to the improvement in the predictive performance of the iAMP-
Attenpred model.

Performance comparison of attention
mechanism and several machine learning
technologies

In order to illustrate the importance of the attention mechanism
on the iAMP-Attenpred predictor, three variants are constructed
based on this predictor to compare performance with it on the
benchmark datasetl. All three variants are obtained through
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Figure 4. ROC curves generated by iAMP-Attenpred predictor and its variants based on existing machine learning algorithms.

modifications using machine learning techniques, wherein the
attention mechanism within our classifier is respectively substi-
tuted with SVM, DT and RF algorithms. Table 3 presents the ACC,
MCC, SEN, SPE, PRE and FSC metrics of the IAMP-Attenpred identi-
fication model and its three variants. Moreover, their ROC curves
and AUROC indicators are shown in Figure 4. It is not difficult to
discover that our new design attains the highest values across all
metrics in comparison to the other three variants. As a result of
our experiments we conclude that the attention mechanism is a
useful mean for the classification ability enhancement of iAMP-
Attenpred predictor.

We delineate the explanation for the capacity improvement
into two aspects. On the one hand, these traditional machine
learning algorithms are typically better suited for structurally
simple data so that they might struggle to effectively handle the
intricate correlations within the sequences data. In the AMPs
classification tasks, the order and interactions within sequences
are crucial for accurate prediction, which conventional methods
often find challenging to capture. On the other hand, the atten-
tion mechanism enables the model to assign varying weights to
different parts of the input sequences. In the context of AMPs
classification, certain specific amino acid sequence segments
might hold greater significance for antimicrobial efficacy. The
attention mechanism allows the model to focus more on these
pivotal segments, thereby enhancing its ability to capture crucial
information.

Performance assessment of iAMP-Attenpred
predictor based on multiple repetitions of 10-fold
cross validation

In this study, multiple repetitions of 10-fold cross validation and
different datasets are utilized for the purpose of more accurately
and reliably assessing the performance and generalization
ability of our new predictor. Concretely speaking, we select the
benchmark datasetl and the benchmark dataset?2 as illustrated
in Table 1 and subsequently perform a comprehensive evaluation
of our novel predictive model by conducting multiple repetitions
of 10-fold cross validation based on these datasets. The reason we
verify it in this way is because this cross validation process can be
repeated many times on different subset combinations to reduce

accidental errors and ensure a more objective assessment of the
evaluation results. Instead, we only present the results of five
repetitions of 10-fold cross validation in the table due to space
constraints in the article. Tables 4 and 5, respectively, display
the performance results of our classifier from five instances of
10-fold cross validation on these two datasets, along with their
average performance. It is clearly obvious that the performance
metrics from each iteration of 10-fold cross validation are similar
to their respective average performance indicators whether for
the benchmark datasetl or the benchmark dataset2. The results
of the experiment reveal the consistency and generalization
capability of our identification model, indicating its reliability
for AMPs classification.

Performance comparison of iAMP-Attenpred
predictor and the state-of-the-art classifiers

For the sake of further demonstrating the effectiveness of
our new design, we compare it with the other state-of-the-
art classifiers. Notably, these existing predictors that also
apply computational methodologies to identify AMPs based
on the benchmark datasetl and the benchmark dataset2 are,
respectively, iAMP-2L [23], MLAMP [48] and iAMP-CA2L [43].
Among them, the first predictor is built on the PseAAC feature
representation method and the fuzzy KNN technology for the
purpose of recognizing AMPs. The second predictor and the third
predictor are individually developed with the RF approach and the
combination model which is relevant with CNN, BiLSTM and SVM
methods. Additionally, we utilize average performance metrics of
the IAMP-Attenpred predictor as listed in Tables 4 and 5 for a fairer
performance comparison. The experimental comparison results
between iAMP-Attenpred predictor and the other classifiers based
on the different datasets are presented in Tables 6 and 7, from
which we can clearly notice that our new design remarkably
outperforms the other state-of-the-art classifiers in terms of
ACC, MCC, SEN, SPE, PRE and FSC. Especially, our method
outperforms other classifiers by approximately 4.25-13% for the
benchmark datasetl and about 4.68-11% for the benchmark
dataset? in terms of ACC metric. This further illustrates our
new design can serve as an effectual mean for aiding AMPs
discovery.
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Table 4: Five times and average performance results of 10-fold cross validation method based on the benchmark datasetl

NoT* ACC MCC SEN SPE PRE FSC

1 0.9844 0.9688 0.9813 0.9872 0.9853 0.9833
2 0.9836 0.9673 0.9788 0.9879 0.9861 0.9823
3 0.9838 0.9676 0.9770 0.9897 0.9880 0.9823
4 0.9834 0.9668 0.9777 0.9884 0.9867 0.9820
5 0.9840 0.9681 0.9805 0.9872 0.9855 0.9829
Average 0.9838 0.9677 0.9791 0.9881 0.9863 0.9826

NoT means number of times.

Table 5: Five times and average performance results of 10-fold cross validation method based on the benchmark dataset2

NoT* ACC MCC SEN SPE PRE FSC

1 0.9766 0.9391 0.9392 0.9902 0.9707 0.9532
2 0.9763 0.9411 0.9579 0.9831 0.9569 0.9562
3 0.9775 0.9430 0.9609 0.9835 0.9558 0.9580
4 0.9802 0.9496 0.9652 0.9856 0.9609 0.9625
5 0.9775 0.9436 0.9634 0.9827 0.9547 0.9586
Average 0.9776 0.9433 0.9573 0.9850 0.9598 0.9577

NoT means number of times.

Table 6: Performance comparison results of iAMP-Attenpred predictor and existing methods based on the benchmark datasetl

Predictor ACC MCC SEN SPE PRE FSC

iAMP-2L4 0.8547 0.7095 0.8897 0.8167 0.8408 0.8646
MLAMP? 0.8929 0.7863 0.9086 0.8778 0.8766 0.8923
iAMP-CA2L® 0.9413 0.8829 0.9547 0.9277 0.9310 0.9427
1AMP-Attenpred 0.9838 0.9677 0.9791 0.9881 0.9863 0.9826

%These data were obtained from the original articles.

Table 7: Performance comparison results of iAMP-Attenpred predictor and existing methods based on the benchmark dataset2

Predictor ACC MCC SEN SPE PRE FSC
1AMP-2L% 0.8632 0.7265 0.8713 0.8603 -b -
MLAMP* 0.8990 0.7370 0.7700 0.9460 -b -
1AMP-CA2L? 0.9308 0.8620 0.9458 0.9161 0.9163 0.9308
iAMP-Attenpred 0.9776 0.9433 0.9573 0.9850 0.9598 0.9577

2These data were obtained from the original articles. ?’-’ means that there is no value in the corresponding item.

LIMITATIONS

Although iAMP-Attenpred predictor demonstrates superior
performance in predicting AMPs, it is important to acknowledge
the presence of several limitations in this study. Firstly, our
work does not consider more specific information such as the
presence of di sulfide bonds, the secondary or tertiary structure
of AMPs or posttranslational modifications, which can also be
crucial factors influencing AMPs function and activity. We will
consider including di sulfide bonds information as an additional
input, explore the possibility of including information about
posttranslational modifications as an additional input and
consider incorporating more structural information into analysis
in future study. Secondly, our work currently only has a verifiable
computing model and lacks a user-friendly web server. In future
work, we plan to develop an intuitive and user-friendly server to
enhance the practicality of our method, making it accessible to a
broader user group.

CONCLUSION

In order to effectively enhance the predictable ability of AMPs,
a novel predictor named iAMP-Attenpred is proposed in this
work. To the best of our knowledge, this new design is the first

work that not only leverages BERT feature encoding technique
from the NLP field but also integrates various deep learning
methods to construct a composite model for AMPs identification.
Following the preprocessing of the benchmark datasets, BERT
model is employed for feature extraction with the aim of better
capturing the structural characteristics of peptide sequences in
this study. In addition, a composite model that consists of CNN,
BiLSTM and attention mechanism is constructed to learn the
distinctive features obtained from BERT approach. Eventually, the
classification module composed of a flatten layer and different
fully connected layers is adopted to discriminate whether a pep-
tide sequence belongs to the category of AMPs or non-AMPs based
on the output of the CNN-BiLSTM-attention model. The results
of experiment illustrate that our identification model remarkably
outperforms the other existing classifiers on the two different
benchmark datasets in terms of ACC, MCC, SEN, SPE, PRE and
FSC. Consequently, we can draw a conclusion that the iAMP-
Attenpred predictor can aid researchers in achieving more precise
and accurate recognition of AMPs. We have reason to believe that
the proposed identification model based on the BERT architecture,
neural network model and attention mechanism holds potential
for extensive applicability across the other various biological
sequence analysis challenges.
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Key Points

e The iAMP-Attenpred predictor based on a combination
of multiple deep learning methods including BERT, CNN,
BiLSTM and attention mechanism is proposed for the
first time to predict and classify antimicrobial peptides
sequences.

e Each amino acid from the preprocessed benchmark
dataset sequencesis treated as a word and then inputted
into BERT pre-training model for feature encoding.

e A composite model composed of one-dimensional CNN,
BiLSTM and attention mechanism is utilized for learning
more discriminate features and a classification module
consisted of a flatten layer and various fully connected
layers is used to for the final discovery of AMPs.

e Compared to the state-of-the-art antimicrobial pep-
tides prediction methods, our new design achieves the
highest sensitivity, specificity, the Matthew’s correlation
coefficient, accuracy, precision and F_score. The iAMP-
Attenpred prediction model can provide valuable refer-
ence and help for researchers in the field of bioinformat-
ics to study antimicrobial peptides.
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